Space & Exploration Technology
Pioneering the technologies that will shape future space missions and exploration
Staff
Researchers
Research Assistants |
PhD candidates |
Visitors |
|---|---|---|
| Dr James Beeley | Luca Löttgen | Emanuele Borghi |
| Dr Litesh Sulbhewar | Christopher Teale | |
| Dr Iain Moore | Majid Alhajeri | |
| Satyam Bhatti | Jack Tufft | |
| Dr Vaibhav Somaji Anuse | Zitong Lin | |
| Dr Khaldon Al-Areqi | Claudia Jimenez Cuesta | |
| Dr Robbie Gordon | Matthew Deans | |
| Jonathan Draper | Edward Tomanek-Volynets | |
| Jack Davies | ||
| Abdullah Akdogan | ||
| Miguel Rosa Morales | ||
| Fabienne Seibert | ||
| Alexander Lake |
Selected publications
Tomanek-Volynets, Edward L. ORCID: https://orcid.org/0009-0006-2927-5632, McInnes, Colin R.
ORCID: https://orcid.org/0000-0003-0988-8854 and Ceriotti, Matteo
ORCID: https://orcid.org/0000-0001-6819-7178
(2025)
Transfer learning for sample-efficient training of space trajectory cost
approximators.
IEEE Transactions on Aerospace and Electronic Systems, 61(6),
pp. 18311-18325.
(doi: 10.1109/TAES.2025.3610417)
McInnes, Colin R. ORCID: https://orcid.org/0000-0003-0988-8854
(2025)
Ringworlds and Dyson spheres can be stable.
Monthly Notices of the Royal Astronomical Society, 537(2),
pp. 1249-1267.
(doi: 10.1093/mnras/staf028)
Gordon, Robert ORCID: https://orcid.org/0000-0002-7760-8984, Ceriotti, Matteo
ORCID: https://orcid.org/0000-0001-6819-7178 and Worrall, Kevin
ORCID: https://orcid.org/0000-0001-9762-5274
(2025)
Investigation of attitude control actuators for large flexible space structures using inverse simulation.
Advances in Space Research, 75(2),
pp. 2062-2087.
(doi: 10.1016/j.asr.2024.11.010)
Teale, Christopher, Beeley, James, Bailet, Gilles ORCID: https://orcid.org/0000-0003-2292-4792 and McInnes, Colin
ORCID: https://orcid.org/0000-0003-0988-8854
(2025)
Femtosatellite mission architectures and mission assurance strategies.
Acta Astronautica, 226(1),
pp. 398-413.
(doi: 10.1016/j.actaastro.2024.10.019)
Çelik, Onur ORCID: https://orcid.org/0000-0003-3706-0675 and McInnes, Colin R.
ORCID: https://orcid.org/0000-0003-0988-8854
(2024)
A constellation design for orbiting solar reflectors to enhance terrestrial solar energy.
Acta Astronautica, 217,
pp. 145-161.
(doi: 10.1016/j.actaastro.2024.01.031)
Viale, Andrea ORCID: https://orcid.org/0000-0002-4076-6284, Çelik, Onur
ORCID: https://orcid.org/0000-0003-3706-0675, Oderinwale, Temitayo
ORCID: https://orcid.org/0000-0003-3829-4924, Sulbhewar, Litesh and McInnes, Colin
ORCID: https://orcid.org/0000-0003-0988-8854
(2023)
A reference architecture for orbiting solar reflectors to enhance terrestrial solar power plant output.
Advances in Space Research, 72(4),
pp. 1304-1348.
(doi: 10.1016/j.asr.2023.05.037)
Loettgen, Jan Luca, Ceriotti, Matteo ORCID: https://orcid.org/0000-0001-6819-7178, Aragon-Camarasa, Gerardo
ORCID: https://orcid.org/0000-0003-3756-5569 and Worrall, Kevin
ORCID: https://orcid.org/0000-0001-9762-5274
(2023)
Deep Reinforcement Learning for Spacecraft Attitude Tracking Manoeuvres.
Aerospace Europe Conference 2023 Joint 10th EUCASS - 9th CEAS Conference, Lausanne, Switzerland, 9-13 July 2023.
(doi: 10.13009/EUCASS2023-671)
Budzyń, Dorota ORCID: https://orcid.org/0000-0002-0824-1947, Zare-Behtash, Hossein
ORCID: https://orcid.org/0000-0002-4769-4076, Cowley, Aidan and Cammarano, Andrea
ORCID: https://orcid.org/0000-0002-8222-8150
(2023)
Implicit lunar dust mitigation technology: compliant mechanisms.
Acta Astronautica, 203,
pp. 146-156.
(doi: 10.1016/j.actaastro.2022.11.042)
Budzyń, D. H. ORCID: https://orcid.org/0000-0002-0824-1947, Zare-Behtash, H.
ORCID: https://orcid.org/0000-0002-4769-4076, Cowley, A. and Cammarano, A.
ORCID: https://orcid.org/0000-0002-8222-8150
(2023)
Compliant Mechanisms for Dust Mitigation in Lunar Hardware Development: Technology and Material Considerations.
In: Materials in the Space Environment (ISMSE-15 and ICPMSE-13), Leiden, The Netherlands, 18-23 Sep 2022,
012001.
(doi: 10.1088/1757-899X/1287/1/012001)
Viavattene, Giulia ORCID: https://orcid.org/0000-0002-6401-4474 and Ceriotti, Matteo
ORCID: https://orcid.org/0000-0001-6819-7178
(2022)
Low-thrust, multiple NEA mission design with sample return to Earth using machine learning.
Journal of Spacecraft and Rockets, 59(6),
pp. 2148-2159.
(doi: 10.2514/1.A34959)
Ionescu, Livia ORCID: https://orcid.org/0000-0002-1337-2175, McInnes, Colin R.
ORCID: https://orcid.org/0000-0003-0988-8854 and Ceriotti, Matteo
ORCID: https://orcid.org/0000-0001-6819-7178
(2022)
A multiple-vehicle strategy for near-Earth asteroid capture.
Acta Astronautica, 199,
pp. 71-85.
(doi: 10.1016/j.actaastro.2022.07.004)
Budzyń, Dorota ORCID: https://orcid.org/0000-0002-0824-1947, Tuohy, Eóin, Garrivier, Natan, Schild, Timon, Cowley, Aidan, Cruise, Reuben, Adachi, Masato, Zare-Behtash, Hossein
ORCID: https://orcid.org/0000-0002-4769-4076 and Cammarano, Andrea
ORCID: https://orcid.org/0000-0002-8222-8150
(2022)
Lunar Dust: Its Impact on Hardware and Mitigation Technologies.
In: 46th Aerospace Mechanisms Symposium, Houston, TX, USA, 11-13 May 2022,
(In Press)
Viavattene, Giulia ORCID: https://orcid.org/0000-0002-6401-4474, Devereux, Ellen, Snelling, David, Payne, Niven, Wokes, Stephen and Ceriotti, Matteo
ORCID: https://orcid.org/0000-0001-6819-7178
(2022)
Design of multiple space debris removal missions using machine learning.
Acta Astronautica, 193,
pp. 277-286.
(doi: 10.1016/j.actaastro.2021.12.051)
White, Craig ORCID: https://orcid.org/0000-0002-8208-5049, Zare-Behtash, Hossein
ORCID: https://orcid.org/0000-0002-4769-4076, Kontis, Konstantinos
ORCID: https://orcid.org/0000-0002-4984-9166, Ukai, Takahiro, Merrifield, Jim, Evans, David, Coxhill, Ian, Langener, Tobias and Van den Eynde, Jeroen
(2019)
Test Facility to Investigate Plume-Regolith Interactions.
International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering (FAR 2019), Monopoli, Italy, 30 Sept - 3 Oct 2019.
The Space and Exploration Technology (SET) research cluster brings together expertise in access to space, in-orbit systems, and planetary exploration technologies. Our work supports the design and delivery of future missions through a combination of simulation, laboratory-scale demonstration, and terrestrial analogue testing.
Centred around the Integrated Space and Exploration Technologies Laboratory (I-SET), the cluster has access to advanced facilities including an air-bearing platform, Helmholtz coil system, vacuum chamber, cleanroom space, and 3D printing. A newly installed ESA-funded space environment chamber enables critical research on rocket plume-regolith interaction for lunar, Mars, and asteroid exploration.
This cluster connects interdisciplinary research across the James Watt School of Engineering and welcomes collaboration with academic, commercial, and space agency partners.
Research divisions
Our facilities
Explore the facilities we use to advance our research:
PhD opportunities
Find out more about related PhD opportunities:
News and events
Read our latest news and find out about upcoming events:
Access to space
We create new rocket technologies and support skills development for the rocket propulsion industry.
Emerging space technologies
We work on technologies at extremes of spacecraft lenght-scale.
Landing on other worlds
We study atmospheric entry and plume-regolith interaction.
Orbital and attitude dynamics
We develop new methods to design attitude manoeuvres, orbits and transfers.
Surface and subsurface exploration
We work on new exploration technologies to allow for drilling in low gravity (asteroids, Moon and Mars).